Multi-Similarity Based Multi-Source Transfer Learning and Its Applications
نویسندگان
چکیده
—In this paper, a novel multi-source transfer learning method based on multi-similarity ((MS)TL) is proposed. First, we measure the similarities between domains at two levels, i.e., “domain-domain” and “sample-domain”. With the multisimilarities, (MS)TL can explore more accurate relationship between the source domains and the target domain. Then, the knowledge of the source domains is transferred to the target based on the smoothness assumption, which enforces the requirement that the target classifier shares similar decision values with the relevant source classifiers on the unlabeled target samples. (MS)TL can increase the chance of finding the sources closely related to the target to reduce the “negative transfer” and also imports more knowledge from multiple sources for the target learning. Furthermore, (MS)TL only needs the pre-learned source classifiers when training the target classifier, which is suitable for large datasets. We also employ a sparsity-regularizer based on the ε-insensitive loss to enforce the sparsity of the target classifier with the support vectors only from the target domain such that the label prediction on any test sample is very fast. We also use the ε-insensitive loss function to enforce the sparsity of the decision function for fast label prediction. Validation of (MS)TL is performed with toy and real-life datasets. Experimental results demonstrate that (MS)TL can more effectively and stably enhance the learning performance. Finally, (MS)TL is also applied to the communication specific emitter identification task and the result is also satisfying.
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملParsing Natural Language Sentences by Semi-supervised Methods
We present our work on semi-supervised parsing of natural language sentences, focusing on multi-source crosslingual transfer of delexicalized dependency parsers. We first evaluate the influence of treebank annotation styles on parsing performance, focusing on adposition attachment style. Then, we present KLcpos3 , an empirical language similarity measure, designed and tuned for source parser we...
متن کاملSource-Target Similarity Modelings for Multi-Source Transfer Gaussian Process Regression
A key challenge in multi-source transfer learning is to capture the diverse inter-domain similarities. In this paper, we study different approaches based on Gaussian process models to solve the multi-source transfer regression problem. Precisely, we first investigate the feasibility and performance of a family of transfer covariance functions that represent the pairwise similarity of each sourc...
متن کاملAn improved similarity measure of generalized trapezoidal fuzzy numbers and its application in multi-attribute group decision making
Generalized trapezoidal fuzzy numbers (GTFNs) have been widely applied in uncertain decision-making problems. The similarity between GTFNs plays an important part in solving such problems, while there are some limitations in existing similarity measure methods. Thus, based on the cosine similarity, a novel similarity measure of GTFNs is developed which is combined with the concepts of geometric...
متن کاملAdaptive Transfer Learning
Transfer learning aims at reusing the knowledge in some source tasks to improve the learning of a target task. Many transfer learning methods assume that the source tasks and the target task be related, even though many tasks are not related in reality. However, when two tasks are unrelated, the knowledge extracted from a source task may not help, and even hurt, the performance of a target task...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCM
دوره 11 شماره
صفحات -
تاریخ انتشار 2016